
January 20, 2003

Summary of Meeting at LLR-Ecole Polytechnique, 14 Jan.-15 Jan. 2003

People:
Frank Gaede (author of summary)
Paulo Mora de Freitas
Henri Videau (partly)
Jean-Claude Brient (partly)
Ties Behnke, Norman Graf, Tony Johnson (phone meeting)

1. Goal
The goal of this meeting was to continue the discussion on the common persistency
framework and the data model for Linear Collider simulation studies (LCIO) started at SLAC
in December and the integration of LCIO into the Mokka framework. This is a summary of
the discussions during those two days at LLR and the phone meeting. It also incorporates
some communication via email that happened since.

2. Topics
The following topics were discussed:

• Data model for generator output (simulation input)
• Data model for simulation output
• Data model for reconstruction output
• Implementation
• Future steps

3. Outcome

3.1. Data model for generator output

The input to the Mokka simulation is based on the HepEvt-interface of Geant4. This
interface definition consists of a subset of the HepEvt common block. In particular it
doesn’t have any vertex information. From this it is clear, that generator events cannot
contain secondary vertices (e.g. from B-mesons). Instead those decays have to be done by
Geant4 and the vertex information has to be taken from there.

3.2. Data model for simulation output

Some small modifications have been made to the data model for simulation output. These
involve mainly naming and the redefinition of the flag-bits for the CalorimeterHit block.
At the time of writing SIO doesn’t allow to have several blocks with the same name in one
record. Thus it was agreed to have a list of block names and types in the RunHeader.

The French group would like to add an additional geometry word to CalorimeterHit, that
is needed for their geometry interface CGA. It has to be discussed whether this is going to
be in the standard for all users of LCIO or whether we need to introduce another bit-flag
to tag the existence of this additional word.

Another issue of discussion was the definition of particles that enter the MCParticle list.
The idea is to have all particles in the list that leave a track in the detector, e.g. decays in
flight (K_s) or delta electrons. The technical definition is not so straight forward, as it is
unclear how to treat decays that happen between calorimeters or shower particles that

back scatter from the calorimeter into the tracker. It was agreed, that people define what
they consider an optimal solution/definition in order to get some implementation that is
practical. Some proposals that involve energy cut offs have been made since (e.g. see Ties
memo on LCIO webpage).

3.3. Data model for reconstruction output

Quite some time of discussion was spent on the reconstruction output data format:
For the clusters information on the intrinsic direction (tracking calorimeter) and its errors
has to be added. Three parameters for the shower profile are probably not enough (what is
the number needed?). Reconstructed objects/particles need some parameters for PID
hypotheses (how many and which?). Vertex information has to be stored for
reconstructed particles – do we need several vertex hypotheses in the event ?
Is there a ‘complete and exclusive list’ of particles in the event, i.e. particles at the IP?
Or will a list of reconstructed particles contain mothers and daughters with corresponding
flags for a loop over particles at the IP (see Ties considerations on the web page)?
It was agreed to further discuss these issues and compare with other experiments’ (LEP)
data models. It was also considered useful to have examples in writing that explain how
v_zeros (K_s), gamma conversions, etc. would be stored in the persistency scheme.

3.4. Implementation

Tony agreed to implement the Java version of LCIO (adopt the LCIO interfaces for
hep.lcd) and to create a CVS repository for code management and documentation.
I will implement the C++ version of LCIO and probably the f77 interface as well, as this
will be a wrapper interface for the C++ version.
Paulo is going implement LCIO into the Mokka framework, once the definition of the API
is stable.
Ties will adopt LCIO (f77) for the Brahms reconstruction program.
It was agreed that it would be desirable to have at least one simulation and reconstruction
program using LCIO by the Amsterdam ECFA/DESY workshop.

3.5. Future development

It would be desirable to have a reconstruction program in the near future that is flexible in
terms of the geometry used for simulation. One option would be to use the CGA (common
geometry interface) of the Mokka framework for the geometry definition in BrahmsReco,
albeit this is feasible for the track reconstruction, it seems to be not so trivial for the
calorimeter part. Another option would be use existing Java reconstruction code from the
American group together with CGA and Mokka. The French group offered to provide a
JAVA interface to CGA (using JNI) if people declare the necessity for such an interface.

Paulo agreed to open Mokka to a larger group of developers if this is desired. A scheme of
how responsibilities (sub packages, e.g. for different sub detectors) are shared would have
to be defined. Also Mokka could serve as a basis for a more open ‘open source like’
simulation framework that uses a more general way of defining the geometry so it could
be used by different groups at the same time. Right now, in Mokka a separate set of
geometry drivers has to be provided for every detector design.

